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The effects of the excluded volume interactions on the conformational properties of star polymers 
have been studied. First order calculations at the critical dimensionality d = 4  yield the critical 
exponents of the average quantities up to first order in e=4-d. We thus find the partit ion function, the 
probabil i ty of the end of a branch to reach the central core and the probability of contact of the ends 
of two  branches. The size of the macromolecule, expressed by the mean square radius of gyration 
<S2>sta, is studied in the region where the interactions between the polymeric units repel one 
another and in the region where the units attract one another. The results are compared with the 
results of previous works and with experiments. 
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INTRODUCTION 

A determining factor for the macroscopic behaviour of 
macromolecules is their structure. The synthesis and 
characterization of polymers of specific structures is 
completed with theoretical studies which aim to explain 
and predict their properties. Star molecules are composed 
o f f  polymeric chains, the branches being joined together 
to a common junction (Figure 1). The synthesis of star 
polymers of different number of branches and of different 
molecular weights is possible ~ and stars with f =  18 have 
recently been synthesized 2. Their theoretical study started 
long ago. Zimm and Stockmayer 3 used the random walk 
model to find the mean square radius of gyration <S2>star 
and they calculated the ratio 

($2 >star 3f-2 
~ = <S2>linear - f 2  

(the ratio of the radius of a star to that of a linear polymer 
of the same molecular weight). The random walk model 
built to describe long ideal chains falls short of describing 
specific effects like the stiffness of the chain 4 or close 
packing of the monomers. In stars the density of the 
segments at the core of the molecule is high and the effects 
due to the close packing of the monomers is easily 
detected 5.6. The size of the molecules and the temperature 
where the second virial coefficient of their solutions 
vanishes are found experimentally to differ from the 
results taken from the model of random walk s'7'a. Core 
effects are more evident in stars of short chains and many 
branches. They become less important for larger 
molecular weights and smaller number of branches where 
the size of the core compared to the size of the molecule is 
small. The random walk model is more able to describe 
such cases 9-~2. 

Other effects not included in the random walk model 
are those coming from the variation of temperature and 

the quality of the solvent. These effects can be studied by 
including in the model the long range interactions due to 
the units far away along the chain but close in space. The 
excluded volume parameter u describes the strength of 
these interactions and it increases generally with the 
increase of temperature and the quality of the solvent. 
Repulsions between the monomers occur when u is 
positive; attractions occur when u becomes negative, and 
when u=0 the net long range interactions vanish. 
Previous work on the subject 13'14 include the work of 
Daoud and Cotton 15 who used a phenomenological 
model with a close-packed core of constant monomer 
density and describe the cases of large number of branches 
and short chains where core effects are important. 
Recently Miyake and Freed 16 incorporated excluded 
volume effects on the Gaussian model in a rigorous way. 
They studied the average properties using the chain 
conformational renormalization group method. Their 
solution, given in terms of renormalized quantities, 
described chains of large molecular weights in good 
solvents where the exponentiation condition incorpo- 
rated in renormalization group theory together with the 
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Figure I a) A star polymer illustrated for f=5, b) The end of a 
branch in contact with the central core, c) The end of two 
branches in contact 
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meaning of the critical exponents, is valid. In this work we 
employ the Gaussian model with excluded volume 
interactions in order to study the effects of the quality of 
the solvent and the temperature, on the conformational 
behaviour of stars. Previous results on linear chains ~ 7,~ s 
are extended to polymers of different structure. Simple 
first order calculations at the critical dimensionality d = 4 
determine the structure of the average quantities and the 
critical exponents to order e = 4 - d .  The radius of 
gyration of a star is expressed in terms of the molecular 
weight of the chain the number of branches f and the 
excluded volume parameter u in an analytic way. This 
permits the study of the size of the molecule in both 
regions, under good solvent conditions where u > 0 but 
also under poor solvent conditions (u<0) where 
attractions occur between the polymeric units, and the 
shrinkage of the molecule starts 19. For large chains and 
for u > 0 the meaning of the critical exponent is valid, 
while for smaller chains the macroscopic behaviour is 
competitively determined from the molecular weight or 
the number of branches of the star. Where possible a 
comparison is made between the present results and the 
up to date experimental findings. 

(2) The probability Px = Ux/C for the end of the branch 
1 to reach the centre of the molecule. U t is the number of 
configurations with the end of the specific branch at the 
centre written as: 

u, =uf0 N rids. P{8.,}a"(8,N) 
i 

(4) 

where 6 d is the d dimensional Dirac delta function. 
(3) The probability P12 = U12/C for the ends of the 

branches 1 and 2 to be in contact. Ut2 is the number of 
configurations with the ends of the two branches in 
contact, expressed as: 

u1~ =uf0 ~ d"8.,P{8.,}a"(81~- 82N) 
i 

(5) 

(4) The mean square radius of gyration 

f f N N 
(S2)star =(I/2M2) E E Z Z ( ( /~" -Sn 'k )2 )  , 

n=ln '= l  1=15~ k=l 
M =f .  N (6) 

THEORETICAL BACKGROUND AND 
DEFINITIONS 

If we consider the centre of the molecule to be fixed at the 
origin (Figure 1), we need two indices for the de- 
termination of the position vectors 6,, of the units of the 
chain. The first index n determines the branch on which 
the unit lies and varies from 1 to f, while the second index i 
indicates the position of the unit from the centre of the 
molecule along the specific branch, and varies from 1-N. 
The probability distribution P{8,,} for the positions of the 
units is given by 

I - -  U_~ f P{8.,} = Po{8.,}exp Z 
l n ' = l  

d Z a (6. ,-6. ,)  
i=1~ j= l  

(1) 

Po{8.,} is an ideal distribution without long range 
interactions and in the Gaussian model it is given by 2° 

Po{R.,} = [d/2n]afm2exp - (d/2) ~.. ( 6 . , -  6.,+,)2 
n = l i = l  

(2) 

The exponential term represents long range pair 
interactions between all the units of the star. For 
simplicity the unit length of the chain has been taken 
equal to unity, while the units of the excluded volume 
parameter u, being equal to double the binary cluster 
integral 2°, are defined so that the exponential term is 
dimensionless. P{8,,} is a central quantity and all 
thermodynamic properties can be defined in terms of it. In 
this work we study the following properties: 

(1) The partition function, related to the free energy of 
the system and taken from P{8.,} by integration in the 
positions of all units. It is proportional to the 
configurational integral 

C = po Ny dd8,,P{8,,},  #o = (d/2n) d/2 
i= 

(3) 

written in terms of the mean square distances between the 
units and expressing the square of the size of the star. First 
order calculations are made, which means that the 
exponential term of equation (1) will be approximated 
with its expansion form to first order in u. 

THE PARTITION FUNCTION AND THE 
PROBABILITIES PI AND P12 

By means of the Gaussian distribution (equation (2)), after 
the performance of all 8,, integ rations~ T, C assumes the 
following form written in terms of diagrams. 

uI : 
A factor equal to (d/27tl 2)d/2 coming from the integrations 
is absorbed in u making it dimensionless. The expressions 
of the two different first order diagrams are given in Table 
1. They are derived from the presence of the delta function 
which brings into contact two different polymeric units. In 
the first diagram the two units belong to the same branch 
while in the second the two units come from two different 
branches. Their values for d = 4 are given in Table 1 and 
using them C becomes 

C = #YOU{ 1 - u [ 2 f ( N -  lnN) + f ( f -  1)lnN]} 

= i~fo N. e-2"u:{  1 + ( 3 f - f 2 ) u l n N }  

(8) 

In the good solvent region (u > 0) and for large molecular 
weights the InN series give rise to expressions of the form 
N °. The characteristic exponent a, as in the case of linear 
chains can be determined from the fixed point value u*. 
Second order calculations on stars yield the same fixed 
point value u* as for linear chains indicating that u* is a 
universal number not depending on the specific architec- 
ture of the molecule. It is equal to u* =e/1617. By means of 
this value equation (8) becomes 

C =  [~oe-2U]:NN('/16)(3-.r).r, u>0,  large N (9) 
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Table 1. First order diagrams for star molecules. 

Diagram Expression Value for d = 4 

N - 1  N 
~. 7- ( j - i ) - ( d / 2 )  N - I n N  

i = 1 J = i +  1 

N N 
7- ~ (i + J ) - (d /2 )  InN 

i = 1  J = l  

~. [ i j +  I N -  i) ( i + j ) ]  -13/2) 2/V -2 InN 
=1 J = l  

N N 
7- 7- [ ( J - - i )  I N - J + i ) ]  - (d/2)  N -2 [ N + 2 1 n N ]  
=1 J = l  

~ l  0 0 

N I . _ ( K _ j ) 2  1 [ ( k - I ) 2  i 

7- Z -- - -  + 2 K i n  
i = 1  J = K  2 t I K 

K + N  
+ 2 ( K + N )  In 

I + N  

( j  + i ) (d /2)  + z 

(k - i)2 

N + I  

1 
k t I N _ ( I _ K ) 2  1 - 1  1 1 1 

Y- Y .  - - - +  + - - -  
i = 1  J = l  ( J + i ) ( d / 2 )  + ] 2 2N N + I  N I 

( I - k )  2 

I N _ i  2 12 i 
7- ~_ - -  - -  + - -  + NIn  

i = 1  J = l  ( j + i ) ( d / 2 ) +  I 2 ( N  + I) 2 

N 

N + I  

I N N - 12 1 12 12 

7-  Y.  - _ _ , ~ _  
i = l J =  I (J + i ) (d /2)  + z 2 2N N + I 

N-1 N 1 
y_ Y. [ (J  - i ) ( 2N  - J + i ) ] - ( d /2 )  

i = 1  J = i + l  4 N  

N N 
~_ ~_ [ ( i + J ) ( 2 N - i - j ) ] - ( d l 2 )  1 

i = 1 J = 1  - N - 2 1 n N  
2 

N N 1 
~. 7- [ i j +  ( 2 N - i ) l i + j ) ]  - (d /2)  - -  N -2 InN 

i =1 J = l  4 

determining in this way the value of the critical exponent 
a, in agreement with the results of renormalization group 
theory t6. On increasingfthe exponent a becomes zero at 
f=  3 and then negative showing the freezing in of the stars 
of many branches. 

More light on the structure of the stars will be shed from 
the probability P1 for the end of the branch 1 to reach the 
core and the probability P12 for the ends of two branches 
to come in contact (Figure 1). 

(10) 

The differences in the diagrams come from the ratio U1/C 
and all the diagrams not involving branch 1 are cancelled. 
The expressions and the values of these diagrams are 
given in Tables 1. By means of these values P1 takes the 
form 

P1 = N - (4 -,)/2 _ u ( 2 f +  4 ) N  - 2 I n N  ~ N - 2 4 (e/4) - (e/8)f ,  U > 0 

(11) 
On increasing the value off, P1 drops very quickly, which 
means that the presence of the other branches prevents the 
end of a branch from reaching the core. For the 
probability P~2 we take 

P12 = Uz2/C = (2N) (a/2)- u ( 4 I ~  -(2N) - ( e / 2 )  

POLYMER, 1984, Vol 25, November 1609 



Conformational properties of star polymers: C. t4. Vlahos and 114. K. Kosmas 

Using the values of the diagrams from Table I we take for 
u* =e/16 that 

Px 2 = (2N)-(4 -Q/2 - -  6u(2N)- 2InN ,-~ N-  2 + (~/8) (13) 

giving rise to an exponent independent o f f  This means 
that the number U12 of configurations with the two ends 
in contact and C depend in the same way on the number of 
branches f for large molecular weights and under good 
solvent conditions. The various effects of the other f - 2  
branches on the probability Ptz are cancelled. 

THE RADIUS OF GYRATION AND 
COMPARISON WITH EXPERIMENTS 

The mean square distances in the definition of (S2),t,r 
(equation (6)) can either be distances between units of the 
same branch ((£1,-£1k) 2) or distances between units 
from different branches ((/; t l -  £ zk)2) • In terms of these 
distances ( S 2 ) s t a r  c a n  be written as 

(s2)s'~'=(ll(2M2)) fk~=l ,~=i ((r.1,- zl,) 2) + 

f(f-1) ~ ~, ((£i,--£2k)2)] (14) 
k = l / = l  

For the calculation of the distance ((rli- rik) 2) between 
units on the same branch interactions coming from units 
of the same branch and interactions coming from other 
branches have to be considered. The first kinds of 
interaction have been calculated previously for the linear 
chain 18 and they are to order u 

A - 2kln~- 2(N 
(N k) 

= - / ) l n / ~ i  ~- 2(/- k)ln(l- k) 

( l -k)  2 
¢- 3( / -  k) (15) 

N 

((£11-£tk)2)=(l-k)-u{A+ 2 ( f - 1 ) [ ~ ~  + 

The diagrams in equation (16) represent the interactions 
from other branches and their expressions and values are 
given in Table 1. Using these values we take for the mean 
square distance between units of the same branch the 
expression 

i ( / V - k )  
((£1,-£1k)2)=(l-k)+u{[2kln-k+2(N-l)ln-~~ 

(l-k) 2 F[_(l_k)2 +2(l-k)ln(1-k)-t N 3(l-k) -2(f -  ,[ 
(N+l) +kln~-(N +k)ln(-ff~]}, l>k (17) 

When f =  1 or 2 the cases of linear chain with molecular 
weights N or 2N are recovered. The effects of the other 
branches on the l to k distance can quantitively be 
determined from thefdependent part of the u term. It is 
seen, for example, that in the good solvent region (u > 0), 
other branches expand more segments which are closer to 
the core. Opposite effects are expected when u is negative. 
For the mean square distance between units on different 
branches we have 

((£ it-/;2k) 2) =(/+ k) -u{B + 2 ( f - 2 ) [ ~ +  

(18) 

I and k measure the distances of the lth and kth units from 
the centre of the star, while B represents the contributions 
from the units of the two branches considered as a linear 
chain with double length. The rest of the u term represents 
the interactions from the remaining ( f -2 )  branches, B 
can be found from A with the substitutions N-*2N, 
l-* N + l, k--* N -  k. The last two diagrams in equation 
(18) are symmetrical with the first two from which they 
can be found if we interchange I and k. The expressions 
and the values of the diagrams are quoted in Table 1. For 
the mean square distance of units from different branches 
we take the expression 

((L 1,- £2k) 2) = (l + k) + u 2 (N-  r)m~-~2 

(X+k) + (l+k)2 3(/+k)] +2(N-l)ln(NZ-i-) +2(l+k)ln(l+k) 2N 

- 2 ( f - 2 )  Nln(N~I~+NIn!NNk) (12+k2)~]~ (19) 

which reveals that the presence of the other branches 
expands more the l to k distance in a good solvent and 
shrinks it more under poor solvent conditions. The 
expressions equations (17) and (19) can be used in 
equation (14) and after approximating the k and 1 
summations with integrations, we take for the mean 
square radius of gyration the expression: 

(s2)~ta~=N(3f ; 2) {l + u[ 21nN +8(f-1)(3f - 2) 

13(2+6(f-I)(2f-3)'~l~, 

-iSt, (-Sf~ -/JJ 
=(S2)star,0{1 +2u[lnM+FiI)]},M=nJ (20) 

(s2),tar,O is the value of the radius without long range 
interactions taken into account; for the Gaussian model 

is equal to M ( ~ ) .  The term in the brackets comes 
k vj  / 

from the long range excluded volume interactions, M is 
proportional to the total molecular weight of the molecule 
and 

4 ( f -  1)(3f- 5)1n2 1311 + 3 ( f -  1)(2f- 3)] 
F(f) lnf+ (V_E) i2 L- (--~-_---~ d 
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Figure 2 The dependence  of the expansion factor 0~ 2 013 the 
excluded volume parameter u for various stars of/14= 1 04 and 
different number of branches, A: f =  5, B: f =  1 0, C: f =  1 5 

is an increasing function of the n u m b e r f o f  branches. The 
excluded volume parameter u depends on the temperature 
and the quality of the solvent, so that the u term in 
equation (20) represents the effects which the variation of 
the temperature and the quality of the solvent bring on 
the conformational behaviour of the chain. This 
term depends on both the molecular weight M and 
on the number f of branches. It has been shown pre- 
viously by means of third order calculations x9 that the 
series in ulnN comes from the expansion of the 
closed form (s 2)=(N/6)[1  + 8 u ( l n N - ~ ) ] l / 4  where 
In N = lim(2/e)(N ~/2 - I) and e = 4 -  d. For  large molecular 

e~0 
weights the In N term dominates over the rest constant 
terms and the power law dependence of the mean square 
radius of gyration on the molecular weight 
(s2)~N(InN)l l4 , ,~N l+(~/s) is recovered. The corres- 
ponding expression for stars o f f  branches includes the 
function F(f).  The expansion factor ~t 2 takes the form 

(s2>s.  -- 1/4 
S 2 ( >star,O {l+8u[lnM+F(f)]} (21) 

Analysing equation (21) we see that a third factor, beyond 
the excluded volume parameter u and the molecular 
weight M, on which the size of the stars depends is the 
n u m b e r f o f  branches. F( f )  is an increasing function o f f  
(F(1) = F(2)= - 1.08, F(5)= -0 .16,  F(10)=2.18, 
F(15)=4.81, F(20)=7.55) so that an increase of M o r f  
increases the expansion factor in the good solvent region 
where u is positive, while a decrease is expected under 
poor solvent conditions where u is negative (Figure 2). 
Both factors M andfde te rmine  c~ 2 through the u part of 
equation (21) acting competitively. The region of power 
law dependence on M is reached when In M is dominant 
over F(f) ,  but F(f )  is an increasing function of f so that 
stars of larger number of branches need larger molecular 
weights to reach the region of power law dependence 

(Figure 3). This property goes with the vanishing of core 
effects which become less important for stars of larger 
molecular weights and smaller number of branches. For  
very large molecular weights F(f )  becomes negligible 
with respect to In M and the expansion factor az tends to 
that of a linear chain of the same molecular weight. 

For  a comparison of the present theoretical results with 
experimental findings we can refer to the works of Berry 9 
and Zillox 5. Berry finds that under good solvent 
conditions the expansion factor ~z for stars wheref>~ 3 is 
bigger than that of a linear chain of the same molecular 
weight where f =  1 or 2 and this can quantitively be seen 
from equation (21) where for u positive on increasingfand 
consequently F( f )  larger ~2 are obtained (Figure 2). The 
increase of ~z with temperature found experimentally 9 is 
also in agreement with equation (21) since ~2 increases 
with u which is an increasing function of temperature 
Zillox correlated the expansion factor with the com- 
bination uM ~/2, and he has found ~2--1 to be 
proportional to uM ~/2 for small values of uM ~/2 while this 
dependence gets weaker for larger values of uM ~/2. The 
explanations for these findings come out of equation (21) 
as follows: For  small values ofu In M equation (21) can be 
approximated up to first order in the small parameter so 
that ~Z-l=2ulnM~2uM':/2.  For e = l  the uM 1/2 de- 
pendence is recovered. For  larger values of ulnM the full 
equation (21) has to be used and a weaker dependence 
comes out as can be seen from Figure 2. 

The excluded volume parameter u is an increasing 
function of T so that the rate of change of the expansion 
factor with respect to temperature goes as the derivative 
d~Z/du. From the analytic equation (21) all derivatives 
with respect to u can be taken. For  the first derivative we 
take: 

de 2 2[In M + F ( f ) ]  

du {l +8u[lnM +F(f)]}  3/4 
(22) 

It decreases with increase in u and consequently 
decreases with the increase of T. This contributes to the 

2.5 

~b 2£ 

i / I I  
/ f  / i  

/ f  /<  / f  / / / i  

/ / / /  

/1" 

/ / /  / /  

/ / / /  

i 
/ / /  

I _ _  L __ j 
1.5 1.8 21 

(LnM) ~' 

Figure 3 The dependence of  ~2 on M for  stars of d i f ferent  
number f branches, A: f = 6 ,  B: F = 1 2, C: f =  1 8, u =0.2. Stars wi th  
larger f need larger molecular  we igh ts  to  reach the region of  power  
law dependence ~2= (8u lnM) l / 4  (represented by the dashed line) 
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decrease of the rate of change of~ 2 with respect to T as the 
temperature increases. This is in accord with the 
experimental findings of Berry 9. 

The analytic dependence of the rate of change ofGt 2 with 
respect to u on M , f a n d  u can be studied from equation 
(22). We see for example that close to the ideal state where 
u is negligible d0~2/du =2[ln M +F(f) ] .  For large mole- 
cular weights where In M dominates over F( f )  it becomes 
of the power law form d~2/du,-~ M ¢2 in accordance with 
Zillox's findings according to which a 2 - 1 ~ u M  1/2. For 
more elevated temperatures it becomes 

dct 2 2 
= (8u)3/4[ln M + F(f)]  '/" 

8 Candau, F., Rempp, P., Benoit, H. Macromolecules 1972, 5, 627 
9 Berry, G. J. Polym. Sci. Part A-2, 1971, 9, 687 

10 Meunier, J. C. and Leemput, R. V. Makromol. Chem. 1971, 147, 
191 

11 Hadjichristidis, N. and Roovers, J, F. L. J. Polym. Sci. Polym. 
Phys. Edn. 1974, 12, 2521 

12 Roovers, J., Hadjichristidis, N. and Fetters, L. Macromolecules 
1983, 16, 214 

13 Khokhlov, A. R. Polymer 1981,22, 447 
14 Mazur, J. and McCrackin, F. Macromolecules 1977, 10, 326 
15 Daoud, M. and Cotton, J. P. J, Phys. (Paris) 1982), 43, 531 
16 Miyake, A. and Freed, K. Macromolecules 1983, 16, 1228 
17 Kosmas, M. J. Phys. A: Math. Gen. 1981, 14, 931 
18 Kosmas, M. J. Phys. A: Math. Gen. 1981, 14, 2779 
19 Kosmas, M. J. Phys. A: Math. Gen. 1982, 15, 1667 
20 Yamakawa, H. 'Modem theory of polymer solutions', Harper 

and Row, New York (1971), Chap. III 

which for large molecular weights takes the form 
da2/du,-* M `/s showing that the dependence of the rate of 
change of the expansion factor with respect to tempera- 
ture becomes weaker for more elevated temperatures. 

CONCLUSIONS 

The technique used previously for the study of the 
thermodynamic properties of linear polymer chains has 
been extended to include the effects coming from the 
macromolecules with different structures. First order 
calculations at the critical dimensionality d = 4 have been 
made for star polymers. In the good solvent region and for 
large molecular weights the average macroscopic proper- 
ties are characterized by certain critical exponents which 
have been determined to order e = 4 - d .  The size of the 
molecule was studied under good and poor solvent 
conditions and a competition for the determination of 
macroscopic behaviour was found between the molecular 
weight M and the number of branches f of the star. 
Further studies are needed to clarify the analytic 
dependence of the macroscopic properties of stars on u, f  
and M and the results of the present work will be of 
assistance in achieving this aim. 
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APPENDIX 

In this appendix we give examples of the evaluation of first 
order diagrams from Table 1, at d = 4. The summations are 
converted into integrations which in the limit of large N's 
yield the following result 

N N N 

1 1 1 (A1) 

quoted in Table 1. 

N N N 

/ 'd ' / 'd"  - 1 2  12 (' "[- 1 1 
= J 'J d,L( N +i )2  (i-~1) 2]  

1 1 I 

(A; 
11- 12 l 2 l-] 

= + 

J 
N N 

= di dj 1 2 

1 1 

(A3) 
N 

=2N di (2N2+2Ni_i2)  (2Ni_i2) 
1 

The first term of equation (A3) yield negligible contri- 
butions while the second gives the result of Table 1. All the 
rest diagrams can be found in the same way and their 
values are written in Table 1. 
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